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UK 

Received 9 May 1983 

Abstract. The profile of the field-cooled magnetisation is considered in the vicinity of the 
spin-glass transition for the Parisi solution. In a finite field the flat profile of Parisi and 
Toulouse is modified and one observes a weak cusp. Analytic expansions are obtained 
both for the high-field (low-temperature) and low-field (high-temperature) regimes. 

The Parisi solution (Parisi 1979, 1980) of the Sherrington-Kirkpatrick (SK) Ising spin 
glass (Sherrington and Kirkpatrick 1975), recently interpreted in terms of the metast- 
able states of Thouless et a1 (1977) and Bray and Moore (1981) by de Dominicis and 
Young (1982), Dasgupta and Sompolinsky (1983) and Parisi (1983), is now widely 
accepted. We describe here the field-cooled magnetisation profile in the vicinity of 
the Almeida-Thouless line (Almeida and Thouless 1978), comparing our predictions 
with those of the Parisi and Toulouse (1980) hypothesis, as appropriate. In a finite 
field the magnetisation is not simply related to the local susceptibilities discussed by 
numerous authors (Parisi 1979, Sompolinsky 1981), so our results represent an 
important addition to the spin-glass literature. The analysis will be performed within 
the equivalent Sompolinsky (1981) framework (de Dominicis et al 1982) which offers 
certain technical advantages. 

The SK model is defined for Ising spins Si = f 1 by the Hamiltonian 

N N 

i.j=l i = l  
H = - t  J;jsisj-h c s i  

where the Jij are quenched independent gaussian random exchanges of infinite range 
with zero mean and variance J 2 / N .  Using the dynamical approach of Sompolinsky 
(1981) or the replica analysis of de Dominicis et a1 (1982) the free energy F per spin 
in the thermodynamic limit may be formulated in terms of the extrema1 jwoblem 

where the free energy functional F({q(x), A(x)}) is defined as follows 

P + log(cosh(PH)) + 1 dx A’(x )[MI,, 
2 0  (3) 
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in terms of an effective field H 
1 

H = h + z 4 ( 0 ) + 1  0 dx ( z ( x ) ~ ( x ) - p A ( x ) [ M ] x ) ,  (4) 

and effective magnetisation M 

M = tanh@H). ( 5 )  

Here a bar above denotes averaging over the gaussian random variables z (x), x E ( 0 , l )  
and z for which 

Z O = O = 5 ,  z ( x ) z ( x ’ )  = S(x - x ’ ) ,  T =  1, (6) 

whilst [. . . I x  defines a restricted average over the variables z (y ), y > x .  We have chosen 
units such that J = 1. Variation of (3) with respect to q‘(x) ,  A ’ ( x ) ,  x E (0, 1) leads 
directly to the Sompolinsky equations 

a(-pF)/a4’(x)=~pz(q(l)-1 - h ( ~ ) + a M / a ( p h ( x ) ) ) = O ,  (7) 

a(-PF)/aA’(x) = iP2(q (x ) - [Mlx)  =o, (8) 2 

where we define h(x)  =dT(x)z ( x ) ,  whilst variation with respect to q(0 )  simply 
reproduces (7) for x + 0. 

In the present framework the field-cooled (FC) or thermodynamic magnetisation 
m is given by the familiar relation 

where the angle brackets denote a full Gibbs statistical average. On the other hand 
the identification of the zero-field cooled (ZFC) magnetisation requires a more detailed 
understanding of the interplay between the Parisi-Sompolinsky solution and the 
metastable states of Thouless et a1 (1977), and is at present unknown. We shall, 
however, identify several useful susceptibilities. First the global FC or thermodynamic 
susceptibility given by the relation 

should be compared with the local FC susceptibility 

( a M l a h = p ( l - q ( l ) + A ( O )  see (7) 

Here the angle brackets denote a full Gibbs statistical average and we use the total 
derivative in (10) to emphasie that x (FC) includes contributions from the explicit 
response of q(x ) ,  A ( x )  to the field h, so that typically ~ ( F c ) ,  ~ ‘ ( F c )  are distinct?. To 

t The limit h + 0 is exceptional for the gauge symmetry Si + -Sa, Jii + -JI ,  all j any i ensures ,y (FC) = ~ ‘ ( F c )  
for h = 0. 
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obtain the mc susceptibilities is more difficult. At present only the local ZFC suscepti- 
bility has been identified and is given by 

where (. . .)R denotes a restricted Gibbs average appropriate to the statistical mechanics 
of a single metastable state. 

To describe the vicinity of the Almeida-Thouless critical line T A ~ ( h )  which marks 
the onset of spin-glass behaviour or anomalous response in the (h, T )  plane it is useful 
to follow Parisi (1980), de Dominicis et a1 (1982) and Sommers (1983) and reformulate 
the free energy functional ( (3)  et seq) in the form 

where the function (b ( y ,  x ) ,  defined as follows 

satisfies the nonlinear integral equation 

r l  

It is important to realise that in a sense the relations (8), (9) are incomplete. Analysing 
the structure of F, it is evident from the alternative representation ( (13)  et seq) that 
the system is invariant under arbitrary reparametrisations x + f ( x ) ,  f monotonic, so 
that predictions are limited to the endpoints of the natural interval chosen as (0, 1 ) .  
Here x = 0 characterises the FC state and x = 1 the statistical mechanics of the mc 
or ‘metastable’ state. The Parisi solution in fact corresponds to a ‘gauge’ choice 
A’(x)=-xq’(x)  which, interpreted by Hertz (1983) in terms of an effective cluster 
dynamics, fixes x uniquely (Sommers 1983), provided we use the symmetry x + f ( x )  
to eliminate the plateaux (q’ (x)  = 0) which are therefore apparently artifacts of the 
replica approach. Here we shall restrict attention to the experimentally accessible 
limits x = 0, 1 for which such subtleties are largely irrelevant. 

To solve (2 )  or (7), (8), below and in the vicinity of the AT line  TAT(^), or throughout 
the high temperature (T >  TAT(^)) paramagnetic phase we develop an effective free 
energy functional, valid if the irreversibility estimated by lA(x)I, Iq(1) - q ( x ) I  is small. 
Constructing 4 ( y ,  x )  and whence F, iteratively we find that the free energy functional 
F({q(x) ,  A ( x ) } )  is of the form 

1 

-6F = - ( ( 1 - q ( 1 ) ) 2 + 2  P 2  Io dx A’(x)q(x)) +$ 4 
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where the functional IC/ is given explicitly by the relation 

1 
- P4 -[ ( 1 - t ’) ( 1 - 3 t ’)g (0) - 2 ( 1 - t 2)2 I dx A’ (x )g (x ) ] 

4 0 

+ p 6  (1/3!)( 1 - t2)(2 - 15t ’ + 15t4)g3(0) + (1 - t’)’( 1 - 3t ’) 

x Io’ dx (A(x)-A(O))g(x)A’(x)-(l -t2)’(1 - 5 t 2 ) g ( 0 ) ]  

[ 

1 1 

X lo dx g (x )A’(x - t 2 (  1 - t ’1’ I dx g ’ (X )A’(x )) + 0(g4, A4) (17) 
0 

in agreeme_nt with Sommers (1983). Here g(x)=q(l)-q(x)-A(x) ,  t = 
tanh[P(h + Jq(o)z] and the bar above refers to the remaining Gaussian average over 
z ( t  = 0, 7 = 1). In the high-temperature paramagnetic phase (T > TAT(h)), both 
q’(x), h’(x) are zero and (16) reduces to the SK or replica symmetric free energy FSK(q) 

Variation of F (13), (14) or (16), (17) shows directly that the Sompolinsky equations 
(7), (8) may be written in the form 

where (I is defined by (17) and the functional A is given explicitly by the relations 

-2t2(1 -t2)‘g(x))+0(A2, g’). (21) 

Differentiating the exact relations (191, (20) with respect to x we see directly that 

P’A(x) = 1 or q’(x) = A’(x) = 0. (22) 

This constraint on the extrema of F is very useful for, in the spin glass phase 
( T <  TAT&)), the ‘gauge’ symmetry {x +f(x), f monotonic} allows us to assume that 
q’(x), A’(x) are non-zero throughout the chosen interval (0, 1). For example (21) 
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implies directly that in the spin-glass phase 

1 =@A(o) = (a2+/ah2)z 

= B2(1 - t’)’- 2B4(l - t2)’(1 - 3t2)g(0) +@( (1 - t’)’(5 - 36t’ + 39t4)g2(0) 
1 

-4(1 -tZ)3(1 -9’) I dx A’(x)g(x)) +O(g’, A3), 
0 

where for x + 0 we can identify A(x) in terms of @, which is known to O(g3, A3) from 
(17). In addition, differentiating the constraint (22) with respect to x ,  we obtain from 
(21) the relation 

O = ( a / a x ) ( A ( x ) )  =2/3’[(1 -t’)’(l -3t2)A’(x)-2t2(1 -t2)2g’(x)]+O(g2, A’), (24) 
which we will use to eliminate A’(x), g(x) (x  # 0) from the problem up to corrections 
of order T~ where T = 1 - T/TAT(h) is the appropriate reduced temperature. 

To determine the magnetisation (9), we observe that (16) implies directly that 

m =a$/ah= r-~’[t(1-t2)g(0)]+~4[~(1-~2)(1-3~2)g’(0)  

which through the function ‘ f ’ ,  depends explicitly on the parameter q(O) ,  given 
selfconsistently by the extremum equation ((19), x = 0). To the required order we have 

q(0) = (z) a@ = 7- 2fi2[t2(1 - t’)g(O)] +p4[ t’(1 - t2 ) (5  - 7t2)g2(0) 

1 

-4t2(1 -f2)’l0 dx A‘(x)g(x)] +O(g3, A3). 

Using (23), (251, (26), we now see directly that the Almeida-Thouless temperature 
TAT(h) which marks the onset of spin-glass behaviour or anomalous response 
( 4 ’ ( x ) ,  -A‘(x) >O) is determined by the familiar relation 

-exp(-z2/2) sech4@(h + G z ) ] .  (27) 

where ~ S K  is given by the SK expression ((26), q(0)  = qSK, A’(x) = g’(x) = 0 and g(1) = 0). 
For T > TAT@), (25) trivialises and we recover the SK expression 

m = m s K =  - exp(-z ’/2) tanh[p (h + G z ) ] ,  

recently discussed by Bouchiat (1983). In the spin-glass phase the situation is more 
complicated. Qualitatively we observe near TA, 

so that the structure of the solution depends critically on the magnitude of h (T << 1). 
To make analytical progress we shall restrict our attention to the vicinity of the 
Almeida-Thouless line T ~ r ( h ) ,  for high fields h >> 1 where ~ S K -  1, SO that the AT line 
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is given by the relation (see below) 

T A T = ~ ( ~ T ) - " ~  exp(-th2)[1 + T i T ( h 2 -  1)(r2/24- 1)]+O[TAT(TA&)4] (30) 

(1 -TAT)3  =$h2[l -($h2)1'3]+O(h7/3). (31) 

and for low fields h << 1 where qSK- h2'3, leading to the equation (see below) 

To obtain the parameters recursively, we express the function f3 in the form 

+ O k 3 ,  A3) (36) 

where t 'k '  = (ak/a(ph)k) tanh[p (h + J;(O)z)]. Most generally therefore 
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where the parameters dk),  depend through g(0) on the reduced temperature T = 
1 - T/TAT(h). Now solving (33) for g(O), using (36), (37), (38) and (39) we find that 

(40) 
vanishes continuously as the Almeida-Thouless temperature TA&) (3 1) is 
approached from the spin-glass phase. If we introduce (40) into (38), (36) and (37) 
we are then finally led to the following expression for the magnetisation (T > 0) 

m / h  = l - ( s h  {[I+ 9(ah 90 (ah 

5 3  2 1 / 3  g(0) = 7(1-$(4h ) + o ( ~ ~ ,  Th4/3 )  

3 2 2/3 3 2 1 / 3 - =  3 2 2/3 

+ O ( T ~ ,  h ‘‘I3) (41) 
which is correct to the second non-trivial order in the natural expansion parameters 
T, h2’3. At leading order (41) reduces to the celebrated Parisi (1980) expression. Our 
result bounds for the first time the corrections to the Parisi and Toulouse (1980) 
hypothesis, which states that throughout the spin-glass phase 

m ( T  h ) = m ( T ~ ~ ( h ) ,  h ) .  (42) 

[m (T, h ) - m (TAT(h), h ) ] / m  (T, h ) !(:h 2)2/37 > 0. (43) 
Bouchiat (1983) has argued on the basis of the SK magnetisation (28) and the Parisi 
and Toulouse hypothesis that, in small fields, the magnetisation m attains its maximum 
value exactly on the Almeida-Thouless line. Beyond leading order we see from (43) 
that this is incorrect and we observe instead a weak cusp in m, for in the high- 
temperature phase it is straightforward to show from (28) that for T << 1 - TAT 

(44) 
To analyse the high-field (low-temperature) magnetisation it is helpful to rephrase 

We may therefore estimate the departure from that profile to be of the form 

3 2 2/3 32 3 2 1/3 m/h = 1 - ( s h  ) {[l+v(sh ) ] - ~ T } + O ( T ~ , ~ ~ / ~ ) .  

(23), (25) and (26) in the form 

In thisdomain weexpectq(O)=q~~+0(7) ,qSK= 1 +O(T2),sowedefineS =qSK-q(0)  
and use the identity 

alb c 1 
f ( h  + ( a  -b )1 ’2z )  = f ( h  +\r;;z)-2JJa(a2f/ah2)(h + G z )  

+ Q ( b 4 ~ ) ~ ( a ~ f / a h ~ ) ( h  + z l ; i ~ ) + o ( ( b J a ) ~ )  (48) 
to re-express these relations in terms of g(O), S, the function s(h,  t )  and its derivatives 
are defined below. 
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We find that (43 ,  (46) and (47) may be developed in the forms 

m = ~ S K  - [T:T (1 - 27)p2g(0)(1 + $p2g(0))  - 6(1- f T i ~ ) ]  + . . . 
7[1- (AT2 -??>T:T (h2  - I)] =$@'g(O)(l -?@'g(o))  +$(h2 - 1) 
6(1-iT:T(h2-l))= TiT(1-~)@2g(0))(1+4(82g(0)))+. . . (52) 

(50) 

(5 1) . . . 

which may be easily exploited to show that the high-field magnetisation is given by 

where the SK magnetisation mSK may be obtained directly from (47). Explicitly 
+h 

(54) 

The expression ( 5 3 )  is correct to the second non-trivial order in the natural expansion 
parameters T,  (TiT In TAT) and TiT. Strictly, the latter could be disregarded, for 
deep in the high-field domain ln(TAT) - h 2  >> 1, however, in view of the weakness of 
the logarithmic singularity we shall keep such contributions. In the context of the 
Parisi and Toulouse hypothesis (see (42)) we see that (53), (54) predicts a difference, 
in this high field of the order 

dz - 2 2 / 2 + 1  e T ~ ~ h ( ( g - ~ ' ) + ( . r r ~ - 9 ) 7 + 0 ( 7 * ,  3 T ~ T ,   TAT^)^). 
mSK=! - ,  J2,e 

[(m(T, h)-m(TAT(h), h ) ) / m ( T ,  h)]-T:~hT>o. ( 5 5 )  

I would like to thank Dr D Sherrington for valuable discussions and the SERC for 
financial support. 
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